Breaking the diffraction limit with dynamic saturation optical microscopy
نویسندگان
چکیده
منابع مشابه
Breaking the diffraction barrier in fluorescence microscopy by optical shelving.
We report the breaking of the diffraction resolution barrier in far-field fluorescence microscopy by transiently shelving the fluorophore in a metastable dark state. Using a relatively modest light intensity of several kW/cm(2) in a focal distribution featuring a local zero, we confine the fluorescence emission to a spot whose diameter is a fraction of the wavelength of light. Nanoscale far-fie...
متن کاملk- Microscopy – resolution beyond the diffraction limit
We present a novel Fourier domain method for microscopic imaging – so-called kmicroscopy– with lateral resolution independent of the detection numerical aperture. The concept is based on sample illumination by a lateral fringe-pattern of varying spatial frequency, which probes the lateral spatial frequency or kspectrum of the sample structure. The illumination pattern is realized by interferenc...
متن کاملFluorescence microscopy below the diffraction limit.
Fluorescence imaging with conventional microscopy has experienced numerous advances in almost every limiting factor from sensitivity to speed. But improved resolution beyond the fundamental limitation of light diffraction has been elusive until recent years. Now, techniques are available that surpass this barrier and improve resolution up to 10 times over that of conventional microscopy. This c...
متن کاملBreaking the resolution limit in light microscopy.
Fluorescent imaging microscopy has been an essential tool for biologists over many years, especially after the discovery of the green fluorescent protein and the possibility of tagging virtually every protein with it. In recent years dramatic enhancement of the level of detail at which a fluorescing structure of interest can be imaged have been achieved. We review classical and new developments...
متن کاملBreaking the diffraction limit of light-sheet fluorescence microscopy by RESOLFT.
We present a plane-scanning RESOLFT [reversible saturable/switchable optical (fluorescence) transitions] light-sheet (LS) nanoscope, which fundamentally overcomes the diffraction barrier in the axial direction via confinement of the fluorescent molecular state to a sheet of subdiffraction thickness around the focal plane. To this end, reversibly switchable fluorophores located right above and b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Physics Letters
سال: 2005
ISSN: 0003-6951,1077-3118
DOI: 10.1063/1.2034116